# Reallocation and Productivity Growth

Eric Bartelsman\*
Vrije Universiteit Amsterdam and Tinbergen
Institute
Canberra, ABS/PC Dec. 9, 2004





- Presentation based on joint work with:
  - Stefano Scarpetta
  - Fabiano Schivardi
  - John Halitwanger
  - and depends on work of many others…..
    - Mika Maliranta, Satu Nurmi, Jonathan Haskell, Richard Duhaitois, Pedro Portugal, Thorsten Schank, Ralf Marten, Ylva Heden, Ellen Hogenboom, Mihail Hazans, Jaan Masso, John Earle, Milan Vodopovec, Maurice Kugler, John Roberts...
  - Recent work funded by EU 6th framework, EUKLEMS

#### Overview

- > Productivity Framework
  - > Defining Experimentation
- > Data Collection
- > Storyline in tables and charts
  - > Productivity Dispersion
    - > High tail of distribution
    - > Role of resource allocation
  - > Entry and Exit
    - Entrant size, dispersion, and post-entry growth



#### Framework

- Productivity Levels
  - > Dispersion across firms
  - > Allocation among continuers, entry/exit
- > Productivity Growth
  - > Transitional growth through reallocation
  - **▶ Improving within-firm productivity**
  - > Pushing out the frontier: Innovation/Experimentation





Benefits of investment depend not only on technological outcome, but also on future sales increases.









#### Framework

- > Productivity Levels
  - > Dispersion across firms
  - > Allocation among continuers, entry/exit
- > Productivity Growth
  - > Transitional growth through reallocation
  - **▶ Improving within-firm productivity**
  - > Pushing out the frontier: Innovation/Experimentation

#### Experimentation

- Expenditures leading to a 'stock' that provides as a flow: newer/better/cheaper ways to meet demand.
  - Is this different from product and process R&D?
  - Is this different from adopting newest technology embodied in capital?
- Two relevant characteristics:
  - uncertainty in path from expenditure to stock growth.
  - Rival nature of service flows coming from stock
- Experimentation yields stock generating non-rival service, but also requires complementary rival stocks.

### Traditional View

|           | Uncertainty            |                             |  |
|-----------|------------------------|-----------------------------|--|
|           | Low                    | High                        |  |
| Rival     | Tangible<br>Investment |                             |  |
| Non-Rival |                        | Intangible Inv.<br>e.g. R&D |  |



## Experimentation

|           | Unce                                                                       | Uncertainty                                                |  |  |  |
|-----------|----------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
|           | Low                                                                        | High                                                       |  |  |  |
| Rival     | Tangible Inv. R&D (markets for inputs and technology licences for outputs) | Experimentation: Uncertainty of market response. Non-rival |  |  |  |
| Non-Rival |                                                                            | outcome. Leveraged through rival assets                    |  |  |  |



### Experimentation

- Flexibility in scale encourages experimentation
- Market 'responsiveness' encourages experimentation
- Areas where technological advance includes uncertainty in market response require experimentation



# ICT Investment requires Market Experimentation

- Quality/cost improvement not observable in 'laboratory'
  - it takes a dog to test the dog food
- Investment recouped by quality/cost improvement times volume increase
- Volume increase requires resource reallocation

### **Market Experimentation**

- What should we observe?
  - Wide dispersion in firm performance
  - Rapid reallocation to best firms
  - Effective market selection (entry/exit)
- Data sources
  - international collaboration
  - distributed micro data analysis



#### Overview

- > Productivity Framework
  - > Defining Experimentation
- > Data Collection
- > Storyline in tables and charts
  - > Productivity Dispersion
    - > High tail of distribution
    - > Role of resource allocation
  - > Entry and Exit
    - Entrant size, dispersion, and post-entry growth



#### Reasons for data collection

- Policy question: are there differences in firm dynamics across countries that can contribute to explain the different pace of innovation. Recent growth trends suggest widening growth disparities between EU and US
- Problem: firm-level data are not readily available for different countries ...
  - ... and existing micro studies do not allow for meaningful crosscountry comparisons, because of differences in: i) underlying data; ii) methodologies; iii) sectoral and time coverage etc.
- Hence, need for assembling micro data trying to minimise country differences.

#### Distributed micro-data collection

- EU Sample (10 countries)
  - Productivity decompositions
  - Sample Stats and correlations by quartile
- World Bank sample (10-15 countries CEU/LA/SEA)
  - Demographics (entry/exit) and survival
  - Productivity decompositions
- OECD Sample (7-10 countries)
  - Same variables

#### Data sources

- Business registers for firm demographics
  - Firm level, at least one employee, 2-digit industry
- Production Stats, enterprise surveys for productivity analysis



#### Distributed micro data research



### Overview

- > Productivity Framework
  - > Defining Experimentation
- > Data Collection
- > Storyline in tables and charts
  - > Productivity Dispersion
    - > High tail of distribution
    - > Role of resource allocation
  - > Entry and Exit
    - Entrant size, dispersion, and post-entry growth



#### Weighted/Unweighted Productivity



#### Weighted/Unweighted Productivity



#### **Dynamic Reallocation**



## Relative Productivity: Top Quartile to mean

#### regressed on country and industry dummies

|      | LPQ    | LPV    | TFP    | MFP    |
|------|--------|--------|--------|--------|
| FIN* | 2.27   | 1.98   | 1.20   | 1.21   |
|      | (.017) | (.009) | (.007) | (.003) |
| FRA  | 2.10   | 1.70   | 1.59   |        |
|      | (.030) | (.017) | (.014) |        |
| GBR  | 2.09   | 1.88   | 1.75   | 1.32   |
|      | (.022) | (.012) | (.010) | (.004) |
| ITA  |        |        | 1.79   |        |
|      |        |        | (800.) |        |
| NLD  | 2.04   | 1.64   | 1.56   | 1.22   |
|      | (.021) | (.012) | (.009) | (.004) |
| USA  | 2.33   | 2.19   | 2.13   | 1.58   |
|      | (.043) | (.024) | (.020) | (.009) |

Note: standard errors in parentheses. \*TPF and MFP are log of mean level for quartiles in Finland. Means of log level elsewhere.

# Labour Productivity Dispersion

|          | ICT-produ | cing | ICT-using |    |
|----------|-----------|------|-----------|----|
| Quartile | US        | EU   | US        | EU |
| Top      | 123       | 118  | 74        | 58 |
| 3        | 88        | 87   | 51        | 48 |
| 2        | 61        | 72   | 40        | 46 |
| Bottom   | 38        | 68   | 26        | 41 |



Units: Thousand US\$ per worker

### THE US IS BETTER AT ACHIEVING EXCELLENT PRODUCTIVITY AND REALLOCATING RESOURCES TO MOST PRODUCTIVE COMPANIES

Source: ESI-VU

Top US companies grow faster than top EU companies



# Incentives for firm-level productivity growth

- The relationship between variability in market share of firms in an industry and productivity growth of the industry.
  - Market share turbulance: the mean output growth of the fastest growing quartile of firms minus the mean output growth of the slowest growing quartile of firms in an industry;
  - Productivity growth: either LPQ, LPV
- A regression of productivity growth in most disaggregated industries, for countries and years, on market share turbulance. Industry of country dummies included in regressions.

#### **Productivity Growth and Reallocation**





## Effect of turbulence on incumbent productivity growth

Unweighted avg incumbents productivity growth regressed on:

'turbulence': interquartile range of cross-sect distribution of output growth

|                                  | <u> </u> |          | o oot alouist |      | _        |         |
|----------------------------------|----------|----------|---------------|------|----------|---------|
|                                  |          | LPQ      |               |      | LPV      |         |
| Turbulance<br>in market<br>share | .14      | .13      | .11           | .13  | .12      | .08     |
| t-stat                           | (14.0)   | (12.1)   | (5.4)         | (8.) | (7.2)    | (3.0)   |
| Dummies                          | -        | Industry | Country       | -    | Industry | Country |
|                                  |          |          |               |      |          |         |
| R-sq                             | .21      | .27      | .29           | .12  | .19      | .25     |
| # obs                            | 712      | 712      | 712           | 455  | 455      | 455     |



## Indirect effect of net-entry to incumbent productivity growth (OECD)

#### Productivity growth of incumbents regressed on net-entry contribution

|       | GR     |         |        | FHK    |        |         |        |        |
|-------|--------|---------|--------|--------|--------|---------|--------|--------|
|       | LPQ    | LPV     | MFP    | TFP    | LPQ    | LPV     | MFP    | TFP    |
| Const | 0.14   | 0.18    | -0.02  | 0.12   | 0.14   | 0.18    | -0.02  | 0.12   |
|       | (4.46) | (3.87)  | (1.07) | (2.71) | (4.50) | (3.96)  | (1.14) | (2.75) |
| NE    | 0.54   | 1.00    | 0.96   | 0.74   | 0.53   | 1.06    | 0.94   | 0.87   |
|       | (7.83) | (10.29) | (8.01) | (6.88) | (7.75) | (11.03) | (7.66) | (7.74) |
| R_sq  | 0.38   | 0.32    | 0.41   | 0.22   | 0.38   | 0.33    | 0.40   | 0.24   |
| nobs  | 515    | 515     | 451    | 703    | 515    | 515     | 451    | 703    |

note: ind ustry & country dummies included; countries vary per regression; t parenthesis

-stat in

#### **Experimentation among entrants**

- Productivity dispersion of entrants in US is much higher than in EU
- Entrants in US are smaller than in EU
- Death rate of entrants a bit higher in US
- Growth of survivors is much larger in US



### Experimentation among entrants Coefficient of variation of entrant productivity: country effects

|      | LPQ    | LPV    | TFP    | MFP    |
|------|--------|--------|--------|--------|
| FIN* | .106   | .117   | .156   | .176   |
|      | (.001) | (.001) | (.004) | (.003) |
| FRA  | .095   | .099   | .175   |        |
|      | (.002) | (.003) | (.007) |        |
| GBR  | .055   | .061   | .095   | .084   |
|      | (.002) | (.002) | (.005) | (.003) |
| ITA  |        |        | .279   |        |
|      |        |        | (.004) |        |
| NLD  | .099   | .102   | .189   | .115   |
|      | (.001) | (.002) | (.004) | (.003) |
| USA  | .139   | .175   | .352   | .247   |
|      | (.003) | (.004) | (.010) | (.007) |

Note: standard errors in parentheses. \*TPF and MFP distribution in levels in Finland. In log-level elsewhere.

### Experimentation among entrants, interacted with technology groups Coefficient of variation of entrant productivity: country X technology effects

|      | LPQ    | LPV    | TFP    | MFP    |
|------|--------|--------|--------|--------|
| FIN* | .009   | .004   | 004    | .005   |
|      | (.003) | (.003) | (.010) | (.006) |
| FRA  | .003   | 001    | 008    | .006   |
|      | (.005) | (.006) | (.018) | (.010) |
| GBR  | .006   | .002   | 005    | .005   |
|      | (.004) | (.004) | (.013) | (.008) |
| ITA  |        |        | .014   |        |
|      |        |        | (.011) |        |
| NLD  | .015   | .006   | .008   | .028   |
|      | (.003) | (.004) | (.011) | (.007) |
| USA  | .019   | .017   | .065   | .049   |
|      | (.008) | (.009) | (.026) | (.015) |

Note: standard errors in parentheses. \*TPF and MFP distribution in levels in Finland. In log-level elsewhere.

## Growth of Survivors relative to size at entry



